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Vibrations of circular plates resting on a sloshing liquid free surface are studied. The fully
coupled problem between sloshing modes of the free surface and bulging modes of the plate
is solved by using the Rayleigh}Ritz method. The sloshing boundary condition is directly
inserted into the eigenvalue problem. The liquid domain is limited by a rigid cylindrical
surface and a rigid #at bottom. The #uid is considered inviscid and incompressible; it is
described by the velocity potential expanded in a series. The present model has as limit cases:
(1) circular plates resting on half-in"nite liquid domain and (2) circular plates completely
covering the liquid in a circular cylindrical tank. The theory is suitable for all axisymmetric
plate boundary conditions. The e!ect of free surface waves on the plate natural frequencies is
signi"cant when the fundamental bulging mode of the plate has its natural frequency close to
those of the "rst sloshing modes of the free surface. The present original solution allows the
study of plates having a very strong coupling between sloshing and bulging modes to be
studied to a high level of accuracy. The convergence of the method is shown. The natural
frequencies and mode shapes for di!erent system parameters are given.
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1. INTRODUCTION

Vibrations of circular plates coupled to liquids have been studied since the pioneering work
of Lord Rayleigh [1]. Lamb [2] studied the free vibrations of clamped, circular ba%ed
plates in contact with a semi-in"nite #uid volume on one side. Lamb used simple assumed
modes and an approximation to obtain the hydrodynamic pressure; this solution was
extended to free-edge circular plates by McLachlan [3]. Recently, Amabili and Kwak [4]
have re-analyzed the same problem by using a re"ned approach based on the Hankel
transformation; the solution was obtained for any boundary condition uniform around the
plate edge. The e!ect of a "nite #uid depth above the ba%ed plate was investigated by
Amabili [5]. The free surface of the liquid was present but free-surface waves were neglected.
Amabili et al. [6] extended the study in reference [4] to annular, ba%ed plates. For this
class of problems, the boundary conditions on the #uid domain are homogeneous and give
rise to a Neumann problem. Circular ba%ed plates have also been studied by Ginsberg and
Chu [7]; they considered circular plates in both an in"nite or annular ba%e, completely
immersed in #uid.

Circular plates coupled to a liquid with a free surface give a system with two families of
natural modes: sloshing and bulging ones. Sloshing modes are caused by the oscillation of
the liquid free surface. Their modal properties are characterized by the shape of the liquid
domain and much less by the #exibility of the coupled structure; sloshing modes are also
0022-460X/01/320261#23 $35.00/0 ( 2001 Academic Press
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present in rigid containers. The bulging modes are the vibrations of the structure that are
a!ected by the #uid}structure interaction. In particular, for low-frequency modes, the
#uid}structure interaction gives an added mass e!ect to the system, thus lowering the
natural frequencies of the bulging modes. When the fundamental bulging mode of the plate
has its natural frequency close to those of the "rst sloshing modes of the free surface of the
liquid, very large coupling between the two families of modes arises and it can be di$cult to
distinguish between sloshing and bulging modes. Only bulging modes can be studied whilst
neglecting free-surface waves.

Elastic circular bottom plates in #uid-"lled cylindrical tanks have been largely studied in
relation to plate vibrations and #uid sloshing in the container, e.g., see references [8}22]. In
this case, the #uid velocity potential can be obtained by using the method of separation of
variables. In particular, Bhuta and Koval [8] were the "rst to solve the coupled problem of
#uid sloshing and plate oscillation. Tong [9] inserted the e!ect of surface tension. Bauer
et al. [12] studied the e!ect of the large amplitude of surface waves. This e!ect was
experimentally and theoretically investigated by Chiba [15, 17, 18]. Nagaya and Nagai [14]
included the viscosity of the liquid and an elastic foundation under the plate. Amabili et al.
[22] considered a complete elastic tank, composed of a circular cylindrical shell and
a bottom plate resting on an elastic foundation, containing a sloshing liquid. Amabili and
Dalpiaz [21] studied, theoretically and experimentally, annular bottom plates, neglecting
free-surface waves in the theory.

Bauer [23] studied a circular plate completely covering the liquid surface in an otherwise
rigid cylindrical tank. The liquid was considered inviscid and incompressible.

Free vibrations of circular plates resting on a free liquid surface were studied for the "rst
time by Kwak and Kim [24] for axisymmetric modes and by Kwak [25] for the general
case. The liquid coupled to the plate was considered semi-in"nite. These studies also address
circular plates completely submerged in an in"nite #uid domain. Experiments con"rming
the results of references [24, 25] have been performed by Amabili et al. [26]. Kwak and
Amabili [27] extended this study to annular plates, successfully comparing the theoretical
and experimental results. The e!ect of "nite #uid depth under the plate was theoretically
and experimentally studied by Kwak and Han [28], but in the model the #uid was assumed
to be in"nite in the radial direction. In all these models [24}28], the boundary conditions
on the #uid domain were mixed and gave rise to a Dirichlet problem. In particular, a zero
velocity potential was imposed at the free liquid surface, so that the e!ect of free-surface
waves was neglected and only bulging modes were investigated. Amabili and Kwak [29]
studied the e!ect of free-surface waves on the natural frequency of bulging modes by using
a perturbation approach; however, sloshing modes cannot be studied with this method.

Vibrations of circular plates resting on a sloshing liquid free surface are studied in the
present paper. Free-edge circular plates #oating on a liquid surface can be used to control
the dangerous sloshing of propellant in rockets with the exception of the "rst asymmetric
mode. To control this mode, a circular plate with a restrained displacement at the edges
(clamped or simply supported) must be used. This plate can be guided, such that the plate
can move perpendicular to the axis of the container, to #oat on the propellant surface when
its level decreases. Other applications are related to nuclear and naval engineering. The fully
coupled problem between sloshing modes of the free surface and bulging modes of the plate
is solved by using the Rayleigh}Ritz method. The sloshing boundary condition is directly
inserted into the eigenvalue problem. The liquid domain is limited by a rigid cylindrical
surface and a rigid #at bottom. The #uid is considered inviscid and incompressible; it is
described by the velocity potential that is expanded in a series. The present model gives as
limit cases: (1) circular plates resting on a half-in"nite liquid domain and (2) circular plates
completely covering the liquid in a circular cylindrical tank. These cases have been studied
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previously by Kwak [25], neglecting free surface waves, and Bauer [23]. This allows for
a comparison of the results and the validation of the present study. The theory is suitable for
all axisymmetric plate boundary conditions. The e!ect of free-surface waves on the plate's
natural frequencies is signi"cant when the fundamental bulging mode of the plate has its
natural frequency close to those of the "rst sloshing modes of the free surface. The case of
very strong interaction between sloshing and bulging modes is solved and indicates the high
degree of accuracy of the present approach even in this critical condition. Interesting
phenomena are detected when a strong interaction between sloshing and bulging modes
arises. Convergence of the method is shown and the results for di!erent system parameters
are given.

2. KINETIC AND POTENTIAL ENERGY OF THE PLATE

A polar co-ordinate system (O, r, h) is introduced with the origin O at the centre of the
plate. The mode shapes, related to the transverse de#ection w, for free vibrations of thin
elastic circular plates coupled to the liquid are expanded by using as admissible functions
the in vacuo eigenfunctions
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are the Ritz unknown coe$cients, n is the number of nodal diameters, m the number of
nodal circles, j

nm
the frequency parameter and A

nm
and C

nm
are the mode-shape parameters;

the frequency and mode-shape parameters depend on the plate's boundary conditions. J
n

and I
n
are the Bessel function and the modi"ed Bessel function of order n respectively. The

equations that give j
nm

and A
nm

/C
nm

are given in Appendix A. The admissible functions are
linearly independent and constitute a complete set. In equation (1) only modes with
a di!erent number of nodal circles are coupled by the liquid}plate interaction; for symmetry
reason (see Figure 1), there is no coupling among modes having a di!erent number of nodal
Figure 1. Elastic circular plate on liquid surface.
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diameters. The radian in vacuo frequency of vibration u
nm

and the frequency parameter
j
nm

are related by

u
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where D"(Eh3)/[12(1!l2)], o
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is the plate mass density, h the plate thickness, a the plate
radius, E the Young's modulus and l the Poisson ratio. In equation (1) the Kirchho! theory
of plates was used. To simplify the computations, the mode-shape parameters A
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are normalized in order to have (see equations (11.106), (33.101) and (31.101) in
reference [30])
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with respect to the argument.

The reference kinetic energy ¹*
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of the plate is given by
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In equation (5) the orthogonality of Bessel functions (plate mode shapes) has been used.
For each mode of the plate vibrating in vacuo
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3. VELOCITY POTENTIAL OF THE LIQUID

For an incompressible and inviscid liquid, it is possible to describe the irrotational liquid
motion (due to the plate's vibration) by means of the velocity potential U that must satisfy
the Laplace equation + 2U"0. The velocity of the liquid is given by v"+U. A cylindrical
co-ordinate system (z, r, h) is introduced as shown in Figure 1; R is the inner radius of the



VIBRATIONS OF CIRCULAR PLATES RESTING ON LIQUID 265
rigid cylindrical tank and H the liquid level. By using the variable separation with respect to
the angular co-ordinate, U can be expressed as
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nm

(r, z) cos (nh), (8)
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Then, the following is imposed: (1) contact without cavitation at the liquid-rigid bottom
interface; (2) contact without cavitation at the liquid-rigid lateral cylindrical interface; (3)
contact without cavitation at the liquid}plate interface, for 0)r)a; and (4) the linearized
sloshing condition at the free surface of the liquid, for a(r)R (see Figure 1). The
super"cial tension of the #uid is neglected. Therefore, the boundary conditions are
expressed by
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where g is the gravity acceleration and u is the circular frequency of vibration of the coupled
system.

The solution of equation (9) in the circular cylindrical #uid domain is
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Equation (16) is the solution of the boundary value problem but it must satisfy the last
boundary condition given by equation (12). Substitution of equations (8) and (16) into
equation (12), multiplying by (1/R2) J

n
(e
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r/R) r dr and integrating between 0 and R gives

e
nk
R

a
nk

a
nk

tanhAenk
H

RB cos(n h)"
1

R2 GP
a

0

w J
n Aenk

r

RB r dr#
u2

g P
R

a

U D
z/H

J
nAenk

r

RB r drH
for k"1,

2
,R, (17a)

where a
nk

is de"ned by the following expression [30]:

1

R2 P
R

0

J
nAenm

r

RB J
n Aenk

r

RB r dr"a
nk
d
mk
"(1/2) [1!(n/e

nk
)2] [J

n
(e
nk

)]2 d
mk

(18)
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is the Kronecker delta. Equation (17a) determines the unknown parameters a
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n"0 the following equation (k"0) must be added to equation (17a) due to the presence of
the constant term a
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By using equations (1), (8) and (16), the set of equations (17) can be rewritten in the form
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and for n"0 the following equation must be added:
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The following parameters, related to integrals in the set of equations (19), are introduced
[30, 31]:
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Equation (21) is valid for mOk. By using equations (18), (20) and (21) the following integral
is obtained:
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By using equations (22)}(25), the boundary condition given by equation (19) can be written
in the "nal form
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In equation (26) a
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"0 if n'0. If n"0, the following equation must be added to the set of

boundary conditions given by (26a)
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The boundary condition given by equations (26a) and (b) will be used in the eigenvalue
problem to obtain the unknown parameters a

nm
.

4. KINETIC ENERGY OF THE LIQUID

For a plate vibrating on the #uid free surface one has [32, 33]
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where ¹*
P

and <
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are given in equations (5) and (7), <
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is the maximum potential energy
associated to free-surface waves and ¹I *
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is the reference kinetic energy of the #uid; u
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circular frequency of the natural free vibration of the plate resting on the liquid. It is well
known that by using Green's theorem [32}34] it is possible to evaluate the reference kinetic
energy of the #uid with a surface integral on the boundary of the #uid domain, where the
contribution of rigid surfaces delimiting the #uid domain is zero. Amabili [32, 33] proved
that equation (27) can be simpli"ed into
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is the reduced reference kinetic energy of the #uid computed by integrating only
over the wet plate surface.

The reduced reference kinetic energy of the #uid is expressed as
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where o
F

is the mass density of the liquid. Equation (29) has been obtained by using
equations (4) and (12). If n'0, the term including a

0
vanishes.

5. EIGENVALUE PROBLEM

For the numerical calculation of the natural frequencies and modes, only N
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enough to give the required accuracy to the solution. All the energies are given by "nite
summations. It is convenient to introduce a vectorial notation. The vector q of the
parameters of the Ritz expansion is de"ned by

qT"Mq
0
,2, q

N1~1
N. (30)

The maximum potential energy of the bottom plate, equation (7), can be written as

<
P
"1

2
t

n
qTK

P
q, (31)

where the elements of the diagonal matrix K
P

are given by

[K
P
]
mi
"d

mi
(D/a2)j4

nm
, m, i"0,2,N

1
!1 (32)

and d
mi

is the Kronecker delta.



VIBRATIONS OF CIRCULAR PLATES RESTING ON LIQUID 269
The reference kinetic energy of the plate, equation (5), may be written as
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The boundary condition given by equation (26) is directly inserted in the eigenvalue
problem and therefore it is transformed into the following vectorial notation:
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In particular, all terms in equation (28) have been multiplied by o
F

with respect to those
given in equation (26) in order to obtain a symmetric formulation of the eigenvalue problem
[32]. In equation (40), m and i start from 1 if n'1.
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The eigenvalue problem takes the following "nal form:

Ku!u2 Mu"0, (42)

where

uT"MqT, aTN, (43)

K"C
K

P
0

K
1

K
S
D , M"C

M
P

M
F

0 M
S
D (44)

and u is the circular frequency of vibration of the coupled system. If n"0, the zero
eigenvalue must be discarded. As a consequence of K

P
, K

S
, M

P
and M

S
being symmetric

matrices and K
1
"!MT

F
, the eigenvalue problem can easily be transformed into one for

symmetric matrices [32]; this guarantees real eigenvalues.

6. NUMERICAL RESULTS AND DISCUSSION

Initially, numerical results have been obtained for some cases already theoretically and
experimentally studied in the literature in order to validate the proposed method.
Numerical results are then obtained for very #exible plates exhibiting full coupling between
sloshing and bulging modes in order to examine this incompletely understood phenomenon
and to show the potential of the method. The numerical results have been obtained by
writing a code inside the Mathematica computer program [35]. If not speci"cally indicated,
natural frequencies (Hz) are given as result; they correspond to u/2n, where u is computed
by using equation (42).

6.1. VALIDATION OF THE MODEL

The present model has been validated initially by comparison with the results of Bauer
[23] for a clamped circular plate completely covering the #uid surface of a circular
cylindrical tank. This system can be obtained as a special case of the present study by
imposing R"a. The geometric and material properties of the system are: R"0)5 m,
a"0)5 m, h"1 mm, o

P
"500 kg/m3, o

F
"1000 kg/m3, l"0)3, E"1)339]1010 and

g"9)81 m/s2. Tables 1 and 2 show a comparison of the non-dimensional frequencies

uN "ua2Jo
P
h/D for di!erent liquid levels H/a computed by using the present method and
TABLE 1

Comparison of the non-dimensional circular frequency uN "ua2Jo
P
h/D for the ,rst three

axisymmetric modes (n"0) of clamped cover plates and di+erent liquid levels H/a with data
from Figure 8 in Bauer [23]

Author H/a 1st mode 2nd mode 3rd mode

Bauer [23] 0)1 1)7 5)9 13)8
Present study 0)1 1)52 5)79 13)83
Bauer [23] 1 2)5 7)5 15)9

Present study 1 2)40 7)37 15)82



TABLE 2

Comparison of the non-dimensional circular frequency uN "ua2Jo
P
h/D for the ,rst three

asymmetric modes with one nodal diameter (n"1) of clamped cover plates and di+erent liquid
levels H/a with data from Figure 10 in Bauer [23]

Author H/a 1st mode 2nd mode 3rd mode

Bauer [23] 0)1 0)69 3)3 9)3
Present study 0)1 0)52 3)18 9)21
Bauer [23] 1 1)5 4)8 11)3

Present study 1 1)10 4)54 11)14

TABLE 3

Comparison of the natural frequency (Hz) of the bulging modes of simply supported plates of
di+erent thickness h with the data from Kwak [25]

Author n h (mm) 1st mode 2nd mode

Kwak [25] 0 1 4)76 43)6
Present study 0 1 4)86 43)7
Kwak [25] 1 1 17)2 79)5

Present study 1 1 17)3 80)9
Kwak [25] 0 0)3 0)80 7)54

Present study 0 0)3 0)80 7)48
Kwak [25] 1 0)3 2)93 13)9

Present study 1 0)3 2)96 13)9
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the data given in Bauer [23]. The agreement of the present results with those of Bauer [23]
is good for both axisymmetric (n"0) and asymmetric (n"1) modes. Results have been
obtained by using 10 terms in the expansion of the plate displacement and 50 terms in the
expansion of the #uid velocity potential.

Another comparison has been performed between the present method and the results
obtained by Kwak [25] for circular plates resting on the free surface of a half-in"nite #uid
domain. It must be speci"ed that the results in Kwak [25] have been obtained by neglecting
free-surface waves; therefore only natural frequencies of bulging modes can be compared.
The dimensions R and H of the #uid domain are chosen to be large enough to approximate
to a half-in"nite domain. It must be observed that by increasing the ratio R/a, more terms
are needed in the expansion of sloshing modes to reach a good degree of accuracy of the
solution. The geometric and material properties of the system in this case are: H"2 m,
R"2 m, a"0)25 m, o

P
"7850 kg/m3, o

F
"1000 kg/m3, l"0)3, E"2)06]1011 and

g"9)81 m/s2. The thickness h is given in Table 3. A good agreement between bulging
frequencies obtained by using the present method and those of Kwak is observed; in fact in
this case the dimensions of the plate and #uid domain give results close to those for
a half-in"nite #uid domain. However, sloshing frequencies cannot be studied by using the
method proposed by Kwak. In the following section, it will be shown that sloshing and
bulging modes are largely coupled for very #exible plates and the study of their coupling is
fundamental in this case.

A comparison between the experimental results obtained by Kwak and Han [28] for
a free-edge circular plate resting on the water surface has also been performed; the water



Figure 2. Natural frequencies of the "rst sloshing and bulging modes with n"2 nodal diameters; case of Kwak
and Han [28]. **, present theoretical results; r, experimental values from reference [28].
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was contained in a circular cylindrical tank where the plate was suspended by a string. The
geometric and material properties of the test system of Kwak and Han [28] were R"0)6 m,
a"0)15 m, o

P
"7730 kg/m3, o

F
"1000 kg/m3, l"0)3, E"2)1]1011; H was varied. Only

bulging modes are reported in reference [28] where theoretical results are also reported,
obtained by neglecting free-surface waves and considering an in"nite water domain in the
radial direction. Figure 2 presents a comparison of the fundamental bulging mode of the
plate, having n"2 nodal diameters. The agreement between the present theoretical results
and experiments is very good. Figure 3 presents a comparison of the "rst axisymmetric
bulging mode of the plate, being the second bulging mode of the system. In this case the
agreement is less; however the theoretical and experimental results show a similar trend.
Theoretical results obtained by Kwak and Han [28] also present a similar di!erence in this
case.

6.2. RESULTS FOR FULLY COUPLED SLOSHING AND BULGING MODES

In the previous section, the present model and the relative computer code, give results
which are in good agreement with the data available in the literature. It has also been shown
that di!erent problems can be obtained as limiting cases of the studied problem. In this
section, free vibrations of the system are studied for very #exible plates that present bulging
modes with natural frequencies very close to those of sloshing modes. In this case, a very
strong interaction between sloshing and bulging modes arises, changing mode shapes and
frequencies of the uncoupled system. In particular, sloshing modes are associated with
a signi"cant vibration amplitude of the plate; similarly, bulging modes of the plate are
associated with a signi"cant amplitude of free-surface waves.



Figure 3. Natural frequencies of the "rst sloshing and bulging modes with n"0 nodal diameters (axisymmetric
mode); case of Kwak and Han [28].**, present theoretical results; r, experimental values from reference [28].

TABLE 4

Convergence of the solution with the number of terms N
1

and N
2

in the plate and -uid
expansions, respectively; h"1 mm, a"0)25 m, n"0, H"0)3 m, R"0)5 m

N
1

N
2

1st S mode 2nd S mode 1st B mode 2nd B mode

4 10 1)84 2)56 4)64 40)0
5 25 1)84 2)56 4)82 44)1

10 50 1)84 2)56 4)82 43)4
20 50 1)84 2)56 4)82 43)4
10 100 1)80 2)57 4)82 43)6
10 150 1)78 2)58 4)82 43)7
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Initially a system with the following geometric and material characteristics has been
studied: H"0)3 m, R"0)5 m, a"0)25 m, h"1 mm, o

P
"7850 kg/m3, o

F
"1000 kg/m3,

l"0)3, E"2)06]1011. Table 4 shows the convergence of the solution versus the number
of terms in the expansion of the plate displacement and #uid potential. Table 4 shows that
10 terms for the plate displacement and 50 terms for the #uid potential are enough to give
good accuracy of the natural frequencies. However, a more speci"c discussion on the
convergence of mode shape is deferred to the last part of this section.

Figure 4 gives the natural frequencies of the "rst sloshing and bulging modes versus the
number n of nodal diameters of the free-edge plate with the same system characteristics
previously given for Table 4, except for a reduced thickness h"0)3 mm. It is clearly shown
that the fundamental sloshing modes has one nodal diameter and that the fundamental



Figure 4. Natural frequencies of the "rst two sloshing modes and of bulging modes with m"0, 1, 2 circular
nodes versus the number n of nodal diameters; free-edge plate, h"0)3 mm.*h*, 1st sloshing mode;*e*, 2nd
sloshing mode; *j*, bulging mode with m"0; *r*, bulging mode with m"1; *m*, bulging mode with
m"2.

Figure 5. Natural frequencies of the "rst two sloshing modes and of bulging modes with m"0, 1 circular nodes
versus the number n of nodal diameters; simply supported plate, h"0)3 mm.*h*, 1st sloshing mode;*e*, 2nd
sloshing mode; *j*, bulging mode with m"0; *r*, bulging mode with m"1.
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bulging mode has two nodal diameters. In particular, for n"0 and 2 the "rst sloshing and
bulging modes are very close in frequency and largely coupled; in the last part of this section
mode shapes are given showing this coupling.

Figure 5 is similar to Figure 4 but applies to a simply supported plate; all the other
system parameters are the same as those in Figure 4. In this case, the fundamental sloshing
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mode still has one nodal diameter but the fundamental bulging mode has zero nodal
diameters.

The e!ect of the level of the liquid below the plate is investigated in Figure 6. The plate
has a thickness h"1 mm and is simply supported; all the other system parameters remain
unchanged; axisymmetric modes (n"0) are investigated. The water level H is varied
between 0)005 and 1 m. It is interesting to note that an increment of the water level from 0)4
to 1 m has almost no e!ect on the natural frequencies. Otherwise, in the range between
0)005 and 0)2 m, a change of the liquid level has an important e!ect on the natural
frequencies of the sloshing and bulging modes.

The e!ect of the radial dimension of the container is studied in Figure 7. All parameters
and boundary conditions are the same as in Figure 6, but the water level is "xed, H"0)5 m,
and the radius R is varied from 0)25 m (where R"a) to 2 m. In this case, the natural
frequency of bulging modes remain almost una!ected when the radius R is increased over
the value 2a; but this is not veri"ed by sloshing modes. However, for both the sloshing and
bulging modes, the largest change in the frequency is obtained when R is varied in the range
a)R)2a. In Figure 7, it is to be noted that the sloshing modes disappear for R"a as
a consequence that all the liquid is covered by the #oating plate in this case, and that the
fundamental mode of the system becomes the bulging mode with 1 nodal circle. In fact, the
bulging mode without nodal circles (m"0) is no longer possible due to the conservation of
the #uid volume.

The sloshing and bulging mode shapes of axisymmetric modes (n"0) of the simply
supported plate of thickness h"1 mm (R"0)5 m and H"0)3 m) are given in Figure 8.
Both the plate and liquid surface displacements are plotted. This allows the convergence of
the method to be checked since the liquid surface and plate displacement should be the same
for 0)r)a"0)25 m. It is clear that the convergence of mode shapes, which is actually
slower than the convergence of frequencies, is very good with 10 terms for the plate
displacement and 50 terms for the #uid potential, except for the second bulging mode (see
Figure 8(d)). For this mode, more sloshing modes must be included in the expansion for the
Figure 6. Natural frequencies of the "rst two sloshing and bulging modes with n"0 nodal diameters
(axisymmetric modes) versus the liquid level H; simply supported plate, h"1 mm, R"0)5 m.*h*, 1st sloshing
mode; *e*, 2nd sloshing mode; *j*, bulging mode with m"0; *r*, bulging mode with m"1.



Figure 7. Natural frequencies of the "rst two sloshing and bulging modes with n"0 nodal diameters
(axisymmetric modes) versus the ratio R/a; simply supported plate, h"1 mm, H"0)5 m. *h*, 1st sloshing
mode; *e*, 2nd sloshing mode; *j*, bulging mode with m"0; *r*, bulging mode with m"1.

Figure 8. Mode shapes of the "rst two sloshing and bulging modes with n"0 nodal diameters (axisymmetric
modes); simply supported plate, h"1 mm, R"0)5 m, H"0)3 m. (a) 1st sloshing mode, 1)84 Hz; (b) 2nd sloshing
mode, 2)56 Hz; (c) 1st bulging mode, 4)82 Hz; (d) 2nd bulging mode, 43)4 Hz.
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convergence of the mode shape (actually the natural frequency already reached convergence
in this case). This point is discussed at the end of this section. It is interesting to observe
that a signi"cant plate displacement is observed for the sloshing modes. Moreover, the
amplitude of free surface waves for the bulging modes is even larger than the plate
displacement (see Figure 8(c)).

The sloshing and bulging mode shapes of the same plate but with the thickness reduced to
h"0)3 mm are given in Figure 9. In this case the convergence of mode shapes, with the
same number of terms, is better than in the previous case because the sloshing and bulging
modes are closer in frequency, especially for the second bulging modes. In this case, the "rst
axisymmetric bulging mode has a lower frequency than the one of the "rst axisymmetric
sloshing mode. For this reason, the amplitude of the free-surface oscillations coupled to
the "rst bulging mode (see Figure 9(c)) are smaller than in Figure 8(c). A larger plate
displacement is associated with sloshing modes with respect to Figure 8(a) and (b) because
the plate is more #exible.

The same plate studied in Figure 9 is analyzed in Figure 10, but with mode shapes having
one nodal diameter (n"1). Figures 10(a)}(d) have been calculated with 10 terms for the
plate displacement and 50 terms for the #uid potential; convergence is good except for the
second bulging mode, as discussed in Figure 8. In fact, the 50th sloshing mode does not
reach the natural frequency of the second bulging modes. Figure 10(e) presents the second
bulging modes calculated with 10 terms for the plate displacement and 200 terms for the
#uid potential; a good convergence is reached in this case on the plate surface. In this case
the 200th sloshing modes has a natural frequency higher than that for the second bulging
mode. However, the di!erence in frequency between the computations in Figures 10(d) and
(e) is negligible, as indicated in the "gure caption.
Figure 9. Mode shapes of the "rst two sloshing and bulging modes with n"0 nodal diameters (axisymmetric
modes); simply supported plate, h"0)3 mm, R"0)5 m, H"0)3 m. (a) 1st sloshing mode, 1)93 Hz; (b) 2nd sloshing
mode, 2)60 Hz; (c) 1st bulging mode, 0)95 Hz; (d) 2nd bulging mode, 7)62 Hz.



Figure 10. Mode shapes of the "rst two sloshing and bulging modes with n"1 nodal diameter; simply
supported plate, h"0)3 mm, R"0)5 m, H"0)3 m. (a) 1st sloshing mode, 0)88 Hz; (b) 2nd sloshing mode, 1)89 Hz;
(c) 1st bulging mode, 2)93 Hz; (d) 2nd bulging mode, 14)04 Hz, computed with N

1
"10 plate terms and N

2
"50

#uid terms; (e) 2nd bulging mode, 13)98 Hz, computed with N
1
"10 plate terms and N

2
"200 #uid terms.
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In general, the sloshing modes must cover the frequency range of the bulging modes
analyzed in order to calculate the mode shape of the free-surface waves accurately. This is
an interesting result. Similarly, by using a classical "nite element code, a very re"ned mesh
must be used to discretize the free surface of the #uid to calculate the free-surface waves.
Figure 10(e) shows how many waves are obtained on the free surface; not less than two
nodes per wave should be used to reconstruct the free-surface waves.

The problem investigated in Figures 8 and 9 was studied by varying the plate thickness in
Figure 11. This "gure shows that a larger interaction between the "rst bulging and sloshing
modes arises for a plate thickness around h"0)5 mm. However, for thinner plates, the
interaction between the sloshing and bulging modes is fundamental. Only when the plate
thickness is large enough does the sloshing and bulging vibrations become practically
uncoupled.



Figure 11. Natural frequencies of the "rst two sloshing and bulging modes with n"0 nodal diameters
(axisymmetric modes) versus the plate thickness h; simply supported plate, R"0)5 m, H"0)3 m. *h*, 1st
sloshing mode; *e*, 2nd sloshing mode; *j*, 1st bulging mode; *r*, 2nd bulging mode.
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7. CONCLUSIONS

The present study introduces a new solution for the vibrations of circular plates resting
on a free liquid surface. The method enables plates with a very strong coupling between the
sloshing and bulging modes to be studied accurately. Free vibrations are studied
numerically in cases of very #exible plates that present bulging modes with natural
frequencies very close to those of the sloshing modes. In these cases, a very strong
interaction between the sloshing and bulging modes arises. Signi"cant plate displacement is
observed for the sloshing modes. Moreover, the amplitude of the free-surface waves for the
bulging modes can even be larger than the plate displacement.

When the distance of rigid surfaces containing the water from the plate is increased (or
deceased) to a value larger than twice the plate radius (both in radial and axial directions),
no signi"cant e!ect has been found on the frequency of the bulging modes of simply
supported plates. However, if the distance of these rigid surfaces from the plate is reduced
the e!ect on natural frequencies can be very important.
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APPENDIX A: FREQUENCY AND MODE-SHAPE PARAMETERS

The frequency parameters of circular plates with clamped, simply supported, and
free-edge boundary conditions can be obtained by solving the characteristic equations:
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for a free-edge circular plate,

where J@
n
and I@

n
indicate the derivatives of Bessel functions with respect to the argument.

The mode-shape parameters can be calculated by using the equations
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for a free-edge circular plate.
TABLE A1

Frequency parameters j
nm

for clamped circular plates

m n"0 n"1 n"2 n"3 n"4 n"5

0 3)1962 4)6109 5)9059 7)1442 8)3466 9)5257
1 6)3064 7)7987 9)2114 10)5361 11)8367 13)1074
2 9)4395 10)9581 12)4020 13)7949 15)1499 16)4751
3 12)5771 14)1089 15)5792 17)0050 18)3960 19)7583
4 15)7164 17)2560 18)7451 20)1921 21)6084 22)9979
5 18)8565 20)4010 21)9009 23)3660 24)8015 26)2117



TABLE A2

Frequency parameters j
nm

for simply supported circular plates (l"0)3)

m n"0 n"1 n"2 n"3 n"4 n"5

0 2)2215 3)7280 5)0610 6)3212 7)5393 8)7294
1 5)4516 6)9627 8)3736 9)7236 11)0319 12)3093
2 8)6114 10)1377 11)5887 12)9875 14)3475 15)6773
3 11)7609 13)2967 14)7717 16)2014 17)5957 18)9613
4 14)9069 16)4489 17)9399 19)3910 20)8098 22)2018
5 18)0513 19)5977 21)1001 22)5670 24)0042 25)4164

TABLE A3

Frequency parameters j
nm

for free-edge circular plates (l"0)3)

m n"0 n"1 n"2 n"3 n"4 n"5

0 * * 2)3148 3)5269 4)6728 5)7875
1 3)0005 4)5249 5)9380 7)2806 8)5757 9)8364
2 6)2003 7)7338 9)1851 10)5804 11)9344 13)2565
3 9)3675 10)9068 12)3817 13)8091 15)1997 16)5606
4 12)5227 14)0667 15)5575 17)0070 18)4232 19)8117
5 15)6727 17)2203 18)7226 20)1882 21)6234 23)0330

282 M. AMABILI
The frequency parameters j
nm

are given in Tables A1}A3 for n and m up to "ve, for
free-edge, simply supported and clamped plates.

APPENDIX B: NOMENCLATURE

a plate radius
D #exural sti!ness of the plate
E Young's modulus of the plate material
g gravity acceleration
h plate thickness
H level of the liquid
I
n

modi"ed Bessel function of order n
J
n

Bessel function of order n
m number of nodal diameters
n number of nodal circles
q
m

Ritz coe$cient
q vector of Ritz coe$cients
r radial co-ordinate
R internal radius of the container
t time
¹*

F
reduced reference kinetic energy of the liquid

¹*
P

reference kinetic energy of the plate
<
P

maximum potential energy of the plate
w de#ection of the plate
=

nm
radial mode shape function

z co-ordinate along the tank axis
h angular co-ordinate
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j
nm

plate frequency parameter
U spatial velocity potential of the liquid
l Poisson ratio
o
F

mass density of the liquid
o
P

mass density of the plate material
u radian frequency of the plate}liquid system (rad/s)
u

nm
radian frequency of the plate in vacuo (rad/s)

uN non-dimensional frequency
+ 2 Laplace operator
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